Serveur d'exploration sur les interactions arbre microorganisme

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Aquatic microfauna alter larval food resources and affect development and biomass of West Nile and Saint Louis encephalitis vector Culex nigripalpus (Diptera: Culicidae).

Identifieur interne : 000146 ( Main/Exploration ); précédent : 000145; suivant : 000147

Aquatic microfauna alter larval food resources and affect development and biomass of West Nile and Saint Louis encephalitis vector Culex nigripalpus (Diptera: Culicidae).

Auteurs : Dagne Duguma ; Michael G. Kaufman ; Arthur B. Simas Domingos

Source :

RBID : pubmed:28515886

Abstract

Ciliate protists and rotifers are ubiquitous in aquatic habitats and can comprise a significant portion of the microbial food resources available to larval mosquitoes, often showing substantial declines in abundance in the presence of mosquito larvae. This top-down regulation of protists is reported to be strong for mosquitoes inhabiting small aquatic containers such as pitcher plants or tree holes, but the nature of these interactions with larval mosquitoes developing in other aquatic habitats is poorly understood. We examined the effects of these two microbial groups on lower trophic level microbial food resources, such as bacteria, small flagellates, and organic particles, in the water column, and on Culex larval development and adult production. In three independent laboratory experiments using two microeukaryote species (one ciliate protist and one rotifer) acquired from field larval mosquito habitats and cultured in the laboratory, we determined the effects of Culex nigripalpus larval grazing on water column microbial dynamics, while simultaneously monitoring larval growth and development. The results revealed previously unknown interactions that were different from the top-down regulation of microbial groups by mosquito larvae in other systems. Both ciliates and rotifers, singly or in combination, altered other microbial populations and inhibited mosquito growth. It is likely that these microeukaryotes, instead of serving as food resources, competed with early instar mosquito larvae for microbes such as small flagellates and bacteria in a density-dependent manner. These findings help our understanding of the basic larval biology of Culex mosquitoes, variation in mosquito production among various larval habitats, and may have implications for existing vector control strategies and for developing novel microbial-based control methods.

DOI: 10.1002/ece3.2947
PubMed: 28515886
PubMed Central: PMC5433994


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Aquatic microfauna alter larval food resources and affect development and biomass of West Nile and Saint Louis encephalitis vector
<i>Culex nigripalpus</i>
(Diptera: Culicidae).</title>
<author>
<name sortKey="Duguma, Dagne" sort="Duguma, Dagne" uniqKey="Duguma D" first="Dagne" last="Duguma">Dagne Duguma</name>
<affiliation>
<nlm:affiliation>Florida Medical Entomology Laboratory University of Florida/IFAS Vero Beach FL USA.</nlm:affiliation>
<wicri:noCountry code="no comma">Florida Medical Entomology Laboratory University of Florida/IFAS Vero Beach FL USA.</wicri:noCountry>
</affiliation>
</author>
<author>
<name sortKey="Kaufman, Michael G" sort="Kaufman, Michael G" uniqKey="Kaufman M" first="Michael G" last="Kaufman">Michael G. Kaufman</name>
<affiliation>
<nlm:affiliation>Department of Entomology Michigan State University East Lansing MI USA.</nlm:affiliation>
<wicri:noCountry code="no comma">Department of Entomology Michigan State University East Lansing MI USA.</wicri:noCountry>
</affiliation>
</author>
<author>
<name sortKey="Simas Domingos, Arthur B" sort="Simas Domingos, Arthur B" uniqKey="Simas Domingos A" first="Arthur B" last="Simas Domingos">Arthur B. Simas Domingos</name>
<affiliation>
<nlm:affiliation>Florida Medical Entomology Laboratory University of Florida/IFAS Vero Beach FL USA.</nlm:affiliation>
<wicri:noCountry code="no comma">Florida Medical Entomology Laboratory University of Florida/IFAS Vero Beach FL USA.</wicri:noCountry>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2017">2017</date>
<idno type="RBID">pubmed:28515886</idno>
<idno type="pmid">28515886</idno>
<idno type="doi">10.1002/ece3.2947</idno>
<idno type="pmc">PMC5433994</idno>
<idno type="wicri:Area/Main/Corpus">000139</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000139</idno>
<idno type="wicri:Area/Main/Curation">000139</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">000139</idno>
<idno type="wicri:Area/Main/Exploration">000139</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Aquatic microfauna alter larval food resources and affect development and biomass of West Nile and Saint Louis encephalitis vector
<i>Culex nigripalpus</i>
(Diptera: Culicidae).</title>
<author>
<name sortKey="Duguma, Dagne" sort="Duguma, Dagne" uniqKey="Duguma D" first="Dagne" last="Duguma">Dagne Duguma</name>
<affiliation>
<nlm:affiliation>Florida Medical Entomology Laboratory University of Florida/IFAS Vero Beach FL USA.</nlm:affiliation>
<wicri:noCountry code="no comma">Florida Medical Entomology Laboratory University of Florida/IFAS Vero Beach FL USA.</wicri:noCountry>
</affiliation>
</author>
<author>
<name sortKey="Kaufman, Michael G" sort="Kaufman, Michael G" uniqKey="Kaufman M" first="Michael G" last="Kaufman">Michael G. Kaufman</name>
<affiliation>
<nlm:affiliation>Department of Entomology Michigan State University East Lansing MI USA.</nlm:affiliation>
<wicri:noCountry code="no comma">Department of Entomology Michigan State University East Lansing MI USA.</wicri:noCountry>
</affiliation>
</author>
<author>
<name sortKey="Simas Domingos, Arthur B" sort="Simas Domingos, Arthur B" uniqKey="Simas Domingos A" first="Arthur B" last="Simas Domingos">Arthur B. Simas Domingos</name>
<affiliation>
<nlm:affiliation>Florida Medical Entomology Laboratory University of Florida/IFAS Vero Beach FL USA.</nlm:affiliation>
<wicri:noCountry code="no comma">Florida Medical Entomology Laboratory University of Florida/IFAS Vero Beach FL USA.</wicri:noCountry>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Ecology and evolution</title>
<idno type="ISSN">2045-7758</idno>
<imprint>
<date when="2017" type="published">2017</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass></textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Ciliate protists and rotifers are ubiquitous in aquatic habitats and can comprise a significant portion of the microbial food resources available to larval mosquitoes, often showing substantial declines in abundance in the presence of mosquito larvae. This top-down regulation of protists is reported to be strong for mosquitoes inhabiting small aquatic containers such as pitcher plants or tree holes, but the nature of these interactions with larval mosquitoes developing in other aquatic habitats is poorly understood. We examined the effects of these two microbial groups on lower trophic level microbial food resources, such as bacteria, small flagellates, and organic particles, in the water column, and on
<i>Culex</i>
larval development and adult production. In three independent laboratory experiments using two microeukaryote species (one ciliate protist and one rotifer) acquired from field larval mosquito habitats and cultured in the laboratory, we determined the effects of
<i>Culex nigripalpus</i>
larval grazing on water column microbial dynamics, while simultaneously monitoring larval growth and development. The results revealed previously unknown interactions that were different from the top-down regulation of microbial groups by mosquito larvae in other systems. Both ciliates and rotifers, singly or in combination, altered other microbial populations and inhibited mosquito growth. It is likely that these microeukaryotes, instead of serving as food resources, competed with early instar mosquito larvae for microbes such as small flagellates and bacteria in a density-dependent manner. These findings help our understanding of the basic larval biology of
<i>Culex</i>
mosquitoes, variation in mosquito production among various larval habitats, and may have implications for existing vector control strategies and for developing novel microbial-based control methods.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="PubMed-not-MEDLINE" Owner="NLM">
<PMID Version="1">28515886</PMID>
<DateRevised>
<Year>2020</Year>
<Month>09</Month>
<Day>28</Day>
</DateRevised>
<Article PubModel="Electronic-eCollection">
<Journal>
<ISSN IssnType="Print">2045-7758</ISSN>
<JournalIssue CitedMedium="Print">
<Volume>7</Volume>
<Issue>10</Issue>
<PubDate>
<Year>2017</Year>
<Month>05</Month>
</PubDate>
</JournalIssue>
<Title>Ecology and evolution</Title>
<ISOAbbreviation>Ecol Evol</ISOAbbreviation>
</Journal>
<ArticleTitle>Aquatic microfauna alter larval food resources and affect development and biomass of West Nile and Saint Louis encephalitis vector
<i>Culex nigripalpus</i>
(Diptera: Culicidae).</ArticleTitle>
<Pagination>
<MedlinePgn>3507-3519</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1002/ece3.2947</ELocationID>
<Abstract>
<AbstractText>Ciliate protists and rotifers are ubiquitous in aquatic habitats and can comprise a significant portion of the microbial food resources available to larval mosquitoes, often showing substantial declines in abundance in the presence of mosquito larvae. This top-down regulation of protists is reported to be strong for mosquitoes inhabiting small aquatic containers such as pitcher plants or tree holes, but the nature of these interactions with larval mosquitoes developing in other aquatic habitats is poorly understood. We examined the effects of these two microbial groups on lower trophic level microbial food resources, such as bacteria, small flagellates, and organic particles, in the water column, and on
<i>Culex</i>
larval development and adult production. In three independent laboratory experiments using two microeukaryote species (one ciliate protist and one rotifer) acquired from field larval mosquito habitats and cultured in the laboratory, we determined the effects of
<i>Culex nigripalpus</i>
larval grazing on water column microbial dynamics, while simultaneously monitoring larval growth and development. The results revealed previously unknown interactions that were different from the top-down regulation of microbial groups by mosquito larvae in other systems. Both ciliates and rotifers, singly or in combination, altered other microbial populations and inhibited mosquito growth. It is likely that these microeukaryotes, instead of serving as food resources, competed with early instar mosquito larvae for microbes such as small flagellates and bacteria in a density-dependent manner. These findings help our understanding of the basic larval biology of
<i>Culex</i>
mosquitoes, variation in mosquito production among various larval habitats, and may have implications for existing vector control strategies and for developing novel microbial-based control methods.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Duguma</LastName>
<ForeName>Dagne</ForeName>
<Initials>D</Initials>
<Identifier Source="ORCID">0000-0003-1941-7095</Identifier>
<AffiliationInfo>
<Affiliation>Florida Medical Entomology Laboratory University of Florida/IFAS Vero Beach FL USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Kaufman</LastName>
<ForeName>Michael G</ForeName>
<Initials>MG</Initials>
<AffiliationInfo>
<Affiliation>Department of Entomology Michigan State University East Lansing MI USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Simas Domingos</LastName>
<ForeName>Arthur B</ForeName>
<Initials>AB</Initials>
<AffiliationInfo>
<Affiliation>Florida Medical Entomology Laboratory University of Florida/IFAS Vero Beach FL USA.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<DataBankList CompleteYN="Y">
<DataBank>
<DataBankName>Dryad</DataBankName>
<AccessionNumberList>
<AccessionNumber>10.5061/dryad.4tv3q</AccessionNumber>
</AccessionNumberList>
</DataBank>
</DataBankList>
<GrantList CompleteYN="Y">
<Grant>
<GrantID>R37 AI021884</GrantID>
<Acronym>AI</Acronym>
<Agency>NIAID NIH HHS</Agency>
<Country>United States</Country>
</Grant>
</GrantList>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2017</Year>
<Month>04</Month>
<Day>09</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>England</Country>
<MedlineTA>Ecol Evol</MedlineTA>
<NlmUniqueID>101566408</NlmUniqueID>
<ISSNLinking>2045-7758</ISSNLinking>
</MedlineJournalInfo>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="Y">Culex mosquito</Keyword>
<Keyword MajorTopicYN="Y">Habrotrocha rosa</Keyword>
<Keyword MajorTopicYN="Y">bacteria</Keyword>
<Keyword MajorTopicYN="Y">ciliate protist</Keyword>
<Keyword MajorTopicYN="Y">disease vectors</Keyword>
<Keyword MajorTopicYN="Y">food web</Keyword>
<Keyword MajorTopicYN="Y">rotifers</Keyword>
<Keyword MajorTopicYN="Y">trophic interactions</Keyword>
<Keyword MajorTopicYN="Y">vector control</Keyword>
</KeywordList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2016</Year>
<Month>09</Month>
<Day>07</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="revised">
<Year>2016</Year>
<Month>12</Month>
<Day>23</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2017</Year>
<Month>03</Month>
<Day>07</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2017</Year>
<Month>5</Month>
<Day>19</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2017</Year>
<Month>5</Month>
<Day>19</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2017</Year>
<Month>5</Month>
<Day>19</Day>
<Hour>6</Hour>
<Minute>1</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>epublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">28515886</ArticleId>
<ArticleId IdType="doi">10.1002/ece3.2947</ArticleId>
<ArticleId IdType="pii">ECE32947</ArticleId>
<ArticleId IdType="pmc">PMC5433994</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>J Med Entomol. 2000 Jul;37(4):626-33</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10916306</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Emerg Infect Dis. 2001 Nov-Dec;7(6):1018-22</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11747732</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Antonie Van Leeuwenhoek. 2002 Aug;81(1-4):293-308</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12448728</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Med Entomol. 2002 Nov;39(6):854-60</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12495183</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Entomol. 1992;37:349-76</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1347208</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Entomol. 1996;41:75-100</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15012325</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Rev Microbiol. 2005 Jul;3(7):537-46</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15953930</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Entomol. 2007;52:489-507</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16978142</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Anim Ecol. 2007 Jul;76(4):651-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17584370</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Am Mosq Control Assoc. 2007;23(2 Suppl):276-82</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17853612</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Biol Sci. 2008 Feb 22;275(1633):463-71</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18077250</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Environ Toxicol. 2011 Apr;26(2):146-52</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19760615</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Oecologia. 2011 Apr;165(4):1073-82</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20931232</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Community Ecol. 2010 Dec;11(2):171-178</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25342946</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Anim Ecol. 2015 May;84(3):723-733</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25382389</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>mSphere. 2017 Feb 1;2(1):</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28168223</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Evolution. 1989 Jan;43(1):223-225</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28568501</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 1988 May 27;240(4856):1193-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">3131877</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Am Mosq Control Assoc. 1995 Jun;11(2 Pt 2):279-83</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7595462</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Med Entomol. 1993 May;30(3):537-43</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8099623</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Naturwissenschaften. 1998 Aug;85(8):359-68</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9762688</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list></list>
<tree>
<noCountry>
<name sortKey="Duguma, Dagne" sort="Duguma, Dagne" uniqKey="Duguma D" first="Dagne" last="Duguma">Dagne Duguma</name>
<name sortKey="Kaufman, Michael G" sort="Kaufman, Michael G" uniqKey="Kaufman M" first="Michael G" last="Kaufman">Michael G. Kaufman</name>
<name sortKey="Simas Domingos, Arthur B" sort="Simas Domingos, Arthur B" uniqKey="Simas Domingos A" first="Arthur B" last="Simas Domingos">Arthur B. Simas Domingos</name>
</noCountry>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/TreeMicInterV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000146 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 000146 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    TreeMicInterV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:28515886
   |texte=   Aquatic microfauna alter larval food resources and affect development and biomass of West Nile and Saint Louis encephalitis vector Culex nigripalpus (Diptera: Culicidae).
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:28515886" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a TreeMicInterV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Thu Nov 19 16:52:21 2020. Site generation: Thu Nov 19 16:52:50 2020